还不清楚三角函数积化和差公式有哪些的小伙伴,赶紧来瞧瞧吧!下面由出国留学网小编为你精心准备了“三角函数积化和差的公式”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!
三角函数积化和差的公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
拓展阅读:三角函数积化和差记忆口诀
积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。
解释:
(1)积化和差最后的结果是和或者差;
(2)若两项相乘,后者为cos项,则积化和差的结果为两项相加;若不是,则结果为两项相减;
(3)若两项相乘,一项为sin,另一项为cos,则积化和差的结果中都是sin项;
(4)若两项相乘,两项均为sin,则积化和差的结果前面取负号。
三角函数常用的诱导公式有哪些
三角函数诱导公式一:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
三角函数诱导公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
三角函数诱导公式三:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
三角函数诱导公式四:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
三角函数诱导公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
三角函数诱导公式六:
π/2±α及3π/2±α与α的三角函数值之间...