2014考研数学微分方程与无穷级数

   如何有效地复习考研数学?除了结合考研大纲把基础打牢,还需适当总结方法、关注重点。针对考生需求,出国留学考研网小编精心整理分享2014年暑期考研数学复习重点解析。以下是高数微分方程与无穷级数部分,希望对广大考生有所帮助。

    一、微分方程

  微分方程可视为一元函数微积分学的应用与推广。该部分在考试中以大题与小题的形式交替出现,平均每年所占分值在8分左右。常考的题型包括各种类型微分方程的求解,线性微分方程解的性质,综合应用。

  对于该部分内容的复习,考生首先要能识别各种方程类型(一阶:可分离变量的方程、齐次方程、一阶线性方程、伯努利方程(数一、二)、全微分方程(数一);高阶:线性方程、欧拉方程(数一)、高阶可降阶的方程(数一、二)),熟悉其求解步骤,并通过足量练习以求熟练掌握;在此基础上还要具备数学建模的能力——能根据几何或物理背景,建立微分方程。

    另外,有几点需提醒考生:

  1.解微分方程主要考查考生计算积分的能力,而实际应用则对考生的综合能力提出较高要求,考生需结合练习把“解方程”和“列方程”的能力练好。

  2.非基本类型的方程一般都可通过变量替换化为基本类型。

  3.考生需弄清常见的物理量、几何量与微分、积分的关系

    二、无穷级数

  级数可视为微积分的综合应用。该部分是数一、数三的必考内容,分值约占10%。常考的题型有:常数项级数的收敛性,幂级数的收敛半径和收敛域,幂级数展开,幂级数求和,常数项级数求和以及傅里叶级数。其中幂级数是重点。

  结合考试分析,建议考生从以下方面把握该部分内容:

  1.常数项级数

  理解其收敛的相关概念并掌握各种收敛性判别法。

  2.幂级数

  考试有三方面的要求:幂级数收敛域的计算,幂级数求和,幂级数展开。考生应通过一定量训练使自己具备这三方面的能力——给定幂级数,准确计算其收敛半径进而得到收敛域,能求其和函数,能将一个简单函数在指定点展开成幂级数。

  3.傅里叶级数

  考试出现频率和考试要求均较低,掌握傅里叶系数的求法,再了解狄利克雷定理的内容即可。

  积跬步以至千里,保持严谨的态度,作为考生,我们无权更改微分方程的初始条件,我们能做的是接受它,上面的考研复习方法以期为备考的你能够受益。

相关推荐: 

2014考研数学——中值定理考试重点汇总 
重点推荐 2014年考研大纲    2014年考研招生简章    2014年考研院校
热点推荐: 2014年生物学专业考研学校排名
          2014年大气科学专业考研学校排名
          
2014年地球物理学专业考研学校排名 
          
2014年海洋科学专业考研学校排名
考研大纲 考研经验 考研真题 考研答案 考研院校 考研录取
分享

热门关注

考研数学怎么备考复习

考研数学

考研数学如何快速提高

考研数学提高方法

考研数学一的题型有哪些

考研数学一题型

考研数学三考什么内容

考研数学三内容

考研数学二的难度系数

考研数学二难度

2020考研数学高数暑期复习:常微分方程

考研复习资料

2020考研数学高数暑期复习资料:无穷级数

2020考研数学

2020考研数学高数必背定理:导数与微分

考研数学

2021考研数学备考:对于高数中导数与微分该如何备考?

考研数学备考

2020考研数学高数必背定理:元函数微分法及其应用

考研数学