在讨论完随机变量后,我们讨论多维随机变量。
先考虑一个问题:什么叫多维随机变量。想一下,咱们在哪个地方提到过“多维”?高数中有二维平面,三维空间。线性代数中向量的维数即向量分量的个数。所谓n维随机变量,就是一个向量,该向量的每个分量是定义在同一个样本空间上的随机变量。或者理解成n个一维随机变量放在一块考虑。
我们学习多维随机变量,要和一维对比起来理解。前面提到,我们是用分布描述一个随机变量的,分布有三种:分布函数,分布律和概率密度。那么,推广一下,就得到了二维随机变量的描述方式。先看分布函数。
一维随机变量的分布函数是个一元函数F(x),它是一维随机变量X落入到一个区间(负无穷,x]的概率;相应地,二维随机变量的分布函数应是一个二元函数F(x,y),它是二维随机变量(X,Y)落入一个平面区域(负无穷,x]乘(负无穷,y]的概率。一维随机变量的分布函数有三条性质:“单调不减”,“0,1之间”,“右连续”。那么推广过来,就得到了二维随机变量分布函数的性质:关于x关于y均为单调不减;函数值在0,1之间;关于x关于y均为右连续。理解起来也不困难:所谓“关于”,就是把一个变量固定让另一个变量变化;分布函数是一个概率,当然在0,1之间,这里与一维有所不同(F(负无穷,y)= F(x,负无穷)=0),只需注意到定义中的逗号是“且”的意思。最后一条性质可以结合图像理解,考得不多。
仍有一个问题:一维随机变量的分布函数的三条性质是充要条件,那么二维随机变量的分布函数的这四条性质是充要条件吗?这个考试不要求。当然,其它类似理解:如F(x)是一维随机变量的通用描述方式,每个随机变量均可对应一个分布函数;相应地,F(x,y)是二维随机变量的通用描述方式,每个二维随机变量均可对应一个分布函数。
理解了二维分布函数的定义和描述方式后,我们看看二维随机变量的类型。回顾一下一维随机变量有哪些类型?离散和连续。推广一下,可以得到二维离散型和连续型随机变量。
什么是一维离散型随机变量?无非是取值为有限或者可列无限个的随机变量。类似的,二维随机变量,若其取值是有限或可列无穷对,则称其为二维离散型随机变量。并且二维离散型随机变量的描述方式与一维一致,也是写出所有可能的取值,写出取值对应的概率即可。差别在于二维的取值是实数对,而一维是实数。
类似地,我们可以得到二维连续型随机变量的定义及性质。
二维随机变量的分布函数、分布律和概率密度统称联合分布。
推荐阅读:考研
考研大纲 | 考研经验 | 考研真题 | 考研答案 | 考研院校 | 考研录取 |