2012中考数学热点知识归纳 61

2012-06-10 10:10:47 2012中考数学


23极端值思想

代表性题型:动态几何问题,动态函数问题。

3.已知为线段上的动点,点在射线上,且满足(如图1所示).

1)当,且点与点重合时(如图2所示),求线段的长;

2)在图1中,联结.当,且点在线段上时,设点之间的距离为,其中表示的面积,表示的面积,求关于的函数解析式,并写出函数定义域;

     

3)当,且点在线段的延长线上时(如图3所示),求的大小。

解析:(1)AD=2,且Q点与B点重合。由=1,∴PB(Q)=PC,△PQC为等腰直角三角形,BC=3,PC=Bccos45°=3×=

2)如图:作PE⊥BC,PF⊥AQ。BQ=x,则AQ=2-x。

                                                    

由△BPF∽△BDP,==,又BF=PE

=,∴PF=PE

  S△APQ=(2-x)PF,S△PBC=×3PE

 ∴y=(2-x)

  P点与D点重合时,此时CQ取最大值。过D作DH⊥BC。

  CD=,此时==,PQ=,BQ=AB-AQ=

 ∴函数的定义域:0≤x≤

 (3)方法1:PQ/PC=AD/AB,假设PQ不垂直PC,则可以作一条直线PQ′垂直于PC,与AB交于Q′点,则:B,Q′,P,C四点共圆。

由圆周角定理,以及相似三角形的性质得:PQ′/PC=AD/AB,

又由于PQ/PC=AD/AB  所以,点Q′与点Q重合,所以角∠QPC=90°

方法2:如图3,作PM⊥BC,PN⊥AB。由==,即==

∴△PNQ∽△PMC   ∠MPC=∠NPN,∴∠QPC=∠MPC+∠QPB=∠NPQ+∠QPM=90°

思想方法解读:这是一道动态几何的变式综合题。

第⑴问,线段的比值不变,Q在特殊点(与B点重合),由AD=AB=2,故PQ(B)=PC,△PQC为等腰直角三角形。利用几何性质可求出PC。

第⑵问中利用三角形相似比,结合已知条件中的固定线段比,找出△PAQ、△PBC高之间的比例关系,是求函数式的关键。而第二问中写出函数的定义域则是难点。需分析出P点运动的极端情况,当P与D重合时,BQ取得最大值。集合图形的几何性质及已知条件中的固定线段比,求出此时BQ的长度,既为BQ的最大值。体现极端值思想。

⑶中可以用四点共圆通过归一法求证,也可以通过构造相似形求证。



中考政策 中考状元 中考饮食 中考备考辅导 中考复习资料
分享

热门关注

初一上册数学知识点是什么

初一上册数学知识点

初一下期有哪些数学知识点

初一下期数学知识点

初中有哪些学习数学的方法

初中学习数学方法

初一上册数学知识点总结

初一上册数学

考试作文写作技巧指导

作文考试写作技巧

2020中考数学:重点知识解题窍门

中考数学

初二数学下册重点知识归纳

初二重点知识

初一数学下册重点知识归纳

数学重点知识

初二数学上册重点知识归纳

数学重点知识

初一数学上册重点知识归纳

数学重点知识