出国留学网专题频道高二数学教案栏目,提供与高二数学教案相关的所有资讯,希望我们所做的能让您感到满意!

高二数学教案与教学反思精选

数学教案与教学反思精选 高二教案与教学反思精选 高二数学教案与教学反思

  教学工作结束后,我们可以在原有教案的基础上总结经验,如何用在下次的教案上。下面是由出国留学网编辑为大家整理的“高二数学教案与教学反思精选”,仅供参考,欢迎大家阅读本文。

  高二数学教案与教学反思精选(一)

  紧张有序的高二教学工作已经结束了,经受了磨砺和考验的我,在各个方面都得到了很大的提高,尤其是学科知识的理解和业务水平方面更有了进步,这都离不开学校领导和同组的有经验的老师的支持和帮助。

  “学高为师,身正为范”,作为一名人民教师,最重要的是教书育人,而要做好教学工作就必须具备精湛的专业水平和良好的思想道德品质。

  这一年来我认真钻研数学中的每一个知识点,精心设计每一节课,虚心向教学经验丰富的教师请教,同时积极主动的学习老教师的实际教学方法,与此同时,我努力做好教学的各个环节,做好学生的课后辅导工作,注意学生的心理素质的提高。尽管我在教学中小心谨慎,但还是留下了一些遗憾。

  为了以后更好提高教学效果。经过一番深思,我个人觉得高二数学教学,应该作到夯实“三基”,理顺知识网络。因为高考命题是以课本知识为载体,全面考查能力,所以,促进学生对基本知识、基本概念和基本方法的巩固掌握相当关键。我从中得到的教学反思如下:

  一、教学定位要合理化,重基础知识、基本方法和基本思想

  通过一年来的高二的数学教学,以及对会考试题及市统测的研究分析发现,数学考查的多是中等题型,占据总分的百分之xx之多,所以我认为,对于大多数的学生作好这部分题是至关重要的。我的做法是:加大独立解题和考场心理的模拟训练,这是我们可以进一步改善的地方,可大大提高整体的数学成绩。与此同时,又要有针对性地提高程度较好的学生,先从思想认识和学习方法上加以指导,提高拔尖人才,这样把一些偏、难、怪的内容减少一些,在平时考试中,特别注意对试题整体的把握,指导学生的整体学习思想。

  二、教师指导好学生对教材的合理利用

  数学考试考查点“万变不离教材”,许多的试题就来源于教材的例题和习题,提高学生对教材的重视的同时,关键做好学生的学习指导工作,对于教材的改造和加工至关重要,先整体把握全教材的章节,再细化具体的内容,用联想的方式,对于详略的处理交代清楚,使学生在自己的头脑中构建知识体系,理解解题思想和知识方法的本质联系,提高实际运用能力非常重要。

  三、理解知识网络,构建认识体系

  各知识模块之间不是孤立的,我们要引导学生发现知识之间的衔接点,有的在概念外延上相连,有的在应用上相通等。这样,就可以把已有知识连成一个完整的体系,在解决问题时便会左右逢源,如鱼得水。

  事实上,在知识点的交汇处命题,在试题中已非常普遍。因此,在教学中,选用练习时,不宜太难,以基础题训练为主,否则就会挫伤学生的信心;也不应过重,不利于对知识的理性归纳。由于学生的数学基础普遍较好,复习时节奏与速度不宜太慢,但尽量给予补缺补漏的时间。本人在这方面不足之处:复习、练习过于综合,有一定难度,因此收效不好

  四、对会考与市统测试题的研究,变被动为主动

  教师对试题要精心研究,对于会考与市统测试题,从考试的知识点,考查思想方法上加以体会,形成自己的认识,关键是举一反三,对于不同的知识点精心设计难度不等的...

与高二数学教案相关的高中教案

最新通用高二数学教案(人教版)

通用高二数学教案 最新通用高二数学教案 最新通用高二数学教案人教版

  教学需要注重对学生的价值观、科学态度、学习方法及能力等全方位的素质能力的培养。下面是由出国留学网编辑为大家整理的“最新通用高二数学教案(人教版)”,仅供参考,欢迎大家阅读本文。

  篇一:最新通用高二数学教案(人教版)

  选修Ⅱ

  1.概率与统计(14课时)

  离散型随机变量的分布列。离散型随机变量的期望值和方差。

  抽样方法。总体分布的估计。正态分布。线性回归。

  实习作业。

  教学目标:

  (1)了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。

  (2)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。

  (3)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。

  (4)会用样本频率分布估计总体分布。

  (5)了解正态分布的意义及主要性质。

  (6)通过生产过程的质量控制图了解假设检验的基本思想。

  (7)了解线性回归的方法。

  (8)实习作业以抽样方法为内容,培养学生用数学解决实际问题的能力。

  2. 极限(12课时)

  数学归纳法。数学归纳法应用举例。

  数列的极限。

  函数的极限。极限的四则运算。函数的连续性。

  教学目标:

  (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

  (2)从数列和函数的变化趋势理解数列极限和函数极限的概念。

  (3)掌握极限的四则运算法则;会求某些数列与函数的极限。

  (4)了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。

  3.导数与微分(16课时)

  导数的概念。导数的几何意义。几种常见函数的导数。

  两个函数的和、差、积、商的导数。复合函数的导数。基本导数公式。

  微分的概念与运算。

  利用导数研究函数的单调性和极值。函数的最大值和最小值。

  教学目标:

  (1)了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。

  (2)熟记基本导数公式(c,xm(m为有理数), sin x, cos x, ex, ax, ln x, logax的导数);掌握两个函数和、差、积、商的求导法则和复合函数的求导法则,会求某些简单函数的导数。

  (3)理解微分的概念(dy=y'dx),了解函数在一点处的微分是函数增量的线性近似值,会求某些简单函数的微分。

  (4)会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。

  4.积分(14课时)

  定积分的概念。定积分的简单性质。微积分基本公式。

  原函数与不定积分的概念。不定积分的线性性质。基本积分公式...

与高二数学教案相关的高中教案

高中数学必修5《等比数列》教案

高中数学必修5教案 等比数列教案 高二数学教案

  高中数学必修5《等比数列》教案【一】

  教学准备

  教学目标

  1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

  2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

  归纳——猜想——证明的数学研究方法;

  3、数学思想:培养学生分类讨论,函数的数学思想。

  教学重难点

  重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

  难点:等比数列的性质的探索过程。

  教学过程

  教学过程:

  1、 问题引入:

  前面我们已经研究了一类特殊的数列——等差数列。

  问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

  (学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

  要想确定一个等差数列,只要知道它的首项a1和公差d。

  已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

  师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

  (第一次类比)类似的,我们提出这样一个问题。

  问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

  (这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

  2、新课:

  1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

  师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?

  师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

  公式的推导:(师生共同完成)

  若设等比数列的公比为q和首项为a1,则有:

  方法一:(累乘法)

  3)等比数列的性质:

  下面我们一起来研究一下等比数列的性质

  通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

  问题4:如果{an}是一个等差数列,它有哪些性质?

  (根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

  3、例题巩固:

与高二数学教案相关的高中教案

高中数学必修4《简单的三角恒等变换》教案

高中数学必修4教案 简单的三角恒等变换教案 高二数学教案
高中数学必修4《简单的三角恒等变换》教案

  高中数学必修4《简单的三角恒等变换》教案

  教学准备

  教学目标

  熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

  掌握两角和与差的正、余弦公式,能用公式解决相关问题。

  教学重难点

  熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

  教学过程

  复习

  两角差的余弦公式

  用- B代替B看看有什么结果?

  教案设计频道小编推荐:高中数学教案 | 高二数学教案 | 高二数学教学计划

与高二数学教案相关的高中教案

高中数学必修4《平面向量应用举例》教案

高中数学必修4教案 平面向量应用举例教案 高二数学教案
高中数学必修4《平面向量应用举例》教案

  高中数学必修4《平面向量应用举例》教案

  教学准备

  教学目标

  1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;

  2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.;

  3.让学生深刻理解向量在处理平面几何问题中的优越性.

  教学重难点

  教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.

  教学难点:如何将几何等实际问题化归为向量问题.

  教学过程

  由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。

  例1、平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?

  思考:

  运用向量方法解决平面几何问题可以分哪几个步骤?

  运用向量方法解决平面几何问题可以分哪几个步骤?

  “三步曲”:

  (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;

  (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;

  (3)把运算结果“翻译”成几何关系.

  教案设计频道小编推荐:高中数学教案 | 高二数学教案 | 高二数学教学计划

...

与高二数学教案相关的高中教案

高中数学必修4《平面向量的数量积》教案

高中数学必修4教案 平面向量的数量积教案 高二数学教案
高中数学必修4《平面向量的数量积》教案

  高中数学必修4《平面向量的数量积》教案【一】

  教学准备

  教学目标

  1.掌握平面向量的数量积及其几何意义;

  2.掌握平面向量数量积的重要性质及运算律;

  3.了解用平面向量的数量积可以处理垂直的问题;

  4.掌握向量垂直的条件.

  教学重难点

  教学重点:平面向量的数量积定义

  教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学过程

  1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

  则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π).

  并规定0向量与任何向量的数量积为0.

  ×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

  2、两个向量的数量积与实数乘向量的积有什么区别?

  (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.

  (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.

  (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.

  高中数学必修4《平面向量的数量积》教案【二】

  教学准备

  教学目标

  1.掌握平面向量的数量积及其几何意义;

  2.掌握平面向量数量积的重要性质及运算律;

  3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

  4.掌握向量垂直的条件.

  教学重难点

  教学重点:平面向量的数量积定义

  教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学工具

  投影仪

  教学过程

  一、复习引入:

  1.向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

  五,课堂小结

  (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的...

与高二数学教案相关的高中教案

高中数学必修4《平面向量的线性运算》教案

高中数学必修4教案 平面向量的线性运算教案 高二数学教案
高中数学必修4《平面向量的线性运算》教案

  高中数学必修4《平面向量的线性运算》教案

  教学准备

  教学目标

  1、 掌握向量的加法运算,并理解其几何意义;

  2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;

  3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;

  教学重难点

  教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.

  教学难点:理解向量加法的定义.

  教学工具

  投影仪

  教学过程

  一、设置情景:

  1、 复习:向量的定义以及有关概念

  强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置

  从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.

  三、应用举例:

  例二(P94—95)略

  练习:P95

  四、小结

  1、向量加法的几何意义;

  2、交换律和结合律;

  3、注意:当且仅当方向相同时取等号.

  五、课后作业:

  P103第2、3题

  课后小结

  1、向量加法的几何意义;

  2、交换律和结合律;

  3、注意:|a+b| ≤ |a| + |b|,当且仅当方向相同时取等号.

  课后习题

  作业:

  P103第2、3题

  板书

  略

  教案设计频道小编推荐:高中数学教案 | 高二数学教案 | 高二数学教学计划

...

与高二数学教案相关的高中教案

高中数学必修4《三角函数模型的简单应用》教案

高中数学必修4 三角函数模型的简单应用教案 高二数学教案
高中数学必修4《三角函数模型的简单应用》教案

  高中数学必修4《三角函数模型的简单应用》教案

  教学准备

  教学目标

  掌握三角函数模型应用基本步骤:

  (1)根据图象建立解析式;

  (2)根据解析式作出图象;

  (3)将实际问题抽象为与三角函数有关的简单函数模型.

  教学重难点

  .利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

  教学过程

  一、练习讲解:《习案》作业十三的第3、4题

  3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是

  (1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?

  (1) 选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值

  (精确到0.001).

  (2) 一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离) ,该船何时能进入港口?在港口能呆多久?

  (3) 若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3

  米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?liuxue86.com

  本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的 “思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

  练习:教材P65面3题

  三、小结:1、三角函数模型应用基本步骤:

  (1)根据图象建立解析式;

  (2)根据解析式作出图象;

  (3)将实际问题抽象为与三角函数有关的简单函数模型.

  2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

  四、作业《习案》作业十四及十五。

  教案设计频道小编推荐:高中数学教案 |

与高二数学教案相关的高中教案

高中数学必修4《函数y=Asin(ωx+φ)的图像》教案

高中数学必修4教案 函数的图像教案 高二数学教案
高中数学必修4《函数y=Asin(ωx+φ)的图像》教案

  高中数学必修4《函数y=Asin(ωx+φ)的图像》教案

  教学准备

  教学目标

  1、 知识与技能

  (1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由 的图象得到函数 的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

  2、 过程与方法

  通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

  3、 情感态度与价值观

  通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

  教学重难点

  重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

  难点: 各种性质的应用。

  教学工具

  投影仪

  教学过程

  【创设情境,揭示课题】

  函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

  五、归纳整理,整体认识

  (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的表现怎样?你的体会是什么?

  六、布置作业: 习题1-7第4,5,6题.

  课后小结

  归纳整理,整体认识

  (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的表现怎样?你的体会是什么?

  课后习题

  作业: 习题1-7第4,5,6题.

  板书

  略

  教案设计频道小编推荐:高中数学教案 |

与高二数学教案相关的高中教案

高中数学必修4《三角函数的图象与性质》教案

数学必修4教案 三角函数的图象与性质教案 高二数学教案
高中数学必修4《三角函数的图象与性质》教案

  高中数学必修4《三角函数的图象与性质》教案【一】

  教学准备

  教学目标

  1、 知识与技能

  (1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。

  2、 过程与方法

  通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。

  3、 情感态度与价值观

  通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。

  教学重难点

  重点: 感受周期现象的存在,会判断是否为周期现象。

  难点: 周期函数概念的理解,以及简单的应用。

  教学工具

  投影仪

  教学过程

  【创设情境,揭示课题】

  同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。所以,我们这节课要研究的主要内容就是周期现象与周期函数。(板书课题)

  【探究新知】

  1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。请你举出生活中存在周期现象的例子。(单摆运动、四季变化等)

  (板书:一、我们生活中的周期现象)

  2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:

  ①如何理解“散点图”?

  ②图1-1中横坐标和纵坐标分别表示什么?

  ③如何理解图1-1中的“H/m”和“t/h”?

  ④对于周期函数的定义,你的理解是怎样?

  以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x必须是定义域内的任意值;f(x+T)=f(x)。

  (板书:二、周期函数的概念)

  3.[展示投影]练习:

  (1) 已知函数f(x)满足对定义域内的任意x,均存在非零常数T,使得f(x+T)=f(x)。

  求f(x+2T) ,f(x+3T)

  略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)

  f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)

  本题小结,由学生完成,总结出“周期函数的周期有无数个”,教师指出一般情况下,为避免引起混淆,...

与高二数学教案相关的高中教案

推荐更多