与方形相关的“面积”的多种求法
与方形相关的求平面图形的“阴影”部分的面积是近年中考中比较常见的问题.求“阴影”部分的面积最能体现数学思维方法的灵活性与技巧性.
最近,我老是看到有关这类题目的文章,其解法也是比较单一的且比较复杂的.有好的解题方法对于考试来说是至关重要的,好的方法意味着即省时间又能准确地做对.
华罗庚先生说:神奇化易是良训,易化神奇不足提!下面我们一起来赏析一下这类题目的几种不同解法,比较一下各种方法的优劣,学习一下“神奇化易”的本领.
1.(小学数学题)如图1:把下面两个正方形放在一起,左边的小正方形边长是10cm,求阴影部分△BDF面积.
解析:这是一道小学里的题目,作为初中生的你该怎么做这道题呢?可能你还不会,也可能你的方法不只一种.下面我们一起来研究.
1.1解法一:如图2,你也许想到了设未知数,采用整个图形的面积减去空白部分的面积,剩下的就是所求阴影部分的面积的方法.我们来一起做一下.
设EF=a cm ,得:
+---
50
1.2解法二:如图3,可能你会联想到平行线具有“传递面积”的功能(等底等高的三角形面积相等),于是我 们 连 接CF ,得:
∵BD∥FC.所以△BDF与△BDC,等底同高面积相等.
∴
1.3解法三:如图4,可你能想到了这样的做法吗?从动态的角度看问题.由上面的两种解法(或者说题目中没告诉正方形EFGC的边长)我们能看出来△BDF的面积与右边的正方形EFGC的边长没有关系.也就是说正方形EFGC的边长是可以变化的,但是正方形EFGC的边长是有取值范围的即EF≧AB.当EF=AB时,是比较特殊的情况如图4,不难看出此时50
点评 上面是一道小学的题目,对于一般的中学生来说解决它也许不成问题.上面的不同方法代表了不同的数学思想,1.1代数思想、1.2几何思想、1.3动态思想(特殊值法)运用不同的思想其繁简程度的不同是显而易见的.
接下来是一道2010年广西南宁的中考题,下面我们运用上面的三种思想(1.1代数思想、1.2几何思想、1.3动态思想(特殊值法))做这道题,比较一下各种方法用于这道题的优劣.
2.(2010广西南宁)如图5,正方形、正方形和正方形的位置如图5所示,点在线段上,正方形的边长为4,则的面积为:( )
(A)10 (B)12 (C)14 (D)16
解析:这道题目可以看做上面一题的变式扩展,我们同样用上述思想来完成这道题目看有没有新的发现.
2.1解法一:如图6,先把它填补成规则的图形,再用整个图形的面积减去空白部分的面积,剩下的就是所求阴影部分的面积.
设左边的大正方形ABCD的边长为a,右边的小正方形的边长为b,则KH=(4-b),
--
--
. 故应选D .
2.2解法二:如图6,或许有些学生认为上面求的表达式比较麻烦,他们注意到四边形AHKD是一个梯形,这样可表示为,表达式变得简单多了.于是
.
由于已知条件并没有直接告诉4 a -4 b的值,有的同学做到这里“卡壳”了.怎么办呢?下面的事情就是求出4 a -4 b的值,为此需要找出a,b的关系.注意到△DCG ~△GPK,则有,即.整理得:4a-4b=16.从而可得. 故应选D .
所以从表面上看,将S△DEK 的表达式变得简单了,似乎求解过程也应该简单.然而在求解过程中,还需用到相似三角形的知识,不仅麻烦有时甚至在这里“卡壳”.
2.3解法三:如图7,利用“传递面积”的功能(等底等高的三角形面积相等),于是我们连接DB、GE、FK,得:△GED的面积等于△GEB的面积、△GEF的面积等于△GEK的面积.
2.4解法四:如图8,利用动态思想(特殊值法).因为题目中没有告诉左边的正方形ABCD和右边正方形FPKR的边长大小,说明所求结果与其大小是没有关系的,其边长大小是可以变化的但是有范围(CD≧GF>PF).用特殊值法,当CD=GF时得到图8,(注意:正方形ABCD的边长变化过程中因为点在线段上,所以GF是不可能等于PF的,四边形FPKR也不总是正方形的.)此时左边的正方形和中间的正方形全等右边的正方形变为一点.有图可知:
点评 这是一道选择题在考试的时候,用前面的两种方法显然是不可取的(计算量大,费时且容易出错.)后两种方法虽然简单易行,可一般的考生不容易想到.
再看一道题,它是2008年黑龙江鸡西的一道中考填空题.前面两道都是关于正方形的而这一道是关于长方形的,也可以看成第一道题的变式.下面我们来做一做.
中考政策 | 中考状元 | 中考饮食 | 中考备考辅导 | 中考复习资料 |