出国留学网专题频道数学知识点总结栏目,提供与数学知识点总结相关的所有资讯,希望我们所做的能让您感到满意!

初一数学知识点总结(汇总大全)

数学知识点汇总 初一数学知识点总结大全

  资料主要是指生活学习工作中需要的材料。在我们的现实生活工作中,时常会需要资料作为参考。资料可以帮助我们更高效地完成各项工作。可是你知不知道我们国家的资料有哪些呢?小编特地为您收集整理“初一数学知识点总结(汇总大全)”,但愿对您的学习工作带来帮助。

初一数学知识点总结(汇总大全)(篇一)

  初一下册知识点总结

  1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。

  2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

  3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。

  4.零指数与负指数公式:

  (1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。

  (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;

  (2)完全平方公式:

  ① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;

  ② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;

  ※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc

  6.配方:

  (1)若二次三项式x2+px+q是完全平方式,则有关系式: ;

  ※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。

  注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。

  ※(3)注意: 。

  7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

  系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

  多项式里,次数最高项的次数叫多项式的次数;

  注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

  9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

  10.合并同类项法则:系数相加,字母与字母的指数不变。

  11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

  注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  平面几何部分

  1、补角重要性质:同角或等角的补角相等.

  余角重要性质:同角或等角的余角相等.

  2、①直线公理:过两点有且只有一条直线.

  线段公理:两点之间线段最短.

  ②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;

  (2)直线外一点与直线上各点连结的所有线段中,垂线段最短.

  比例尺:比例尺1:m中,1表示图上距离,...

与数学知识点总结相关的实用资料

初中数学知识点总结电子版(必备)

数学知识点总结 初中数学知识点电子版必备

  资料一般指代可供人们参考的信息知识等。在我们的学习或者工作中,常常会用到一些资料。参考资料我们接下来的学习工作才会更加好!小编为朋友们了收集和编辑了“初中数学知识点总结电子版(必备)”,仅供参考,欢迎大家阅读。

初中数学知识点总结电子版(必备)(篇一)

  一、基本知识

  一、数与代数

  A、数与式:

  1、有理数:①整数→正整数,0,负整数;

  ②分数→正分数,负分数

  数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:带上符号进行正常运算。

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数

  无理数

  无理数:无限不循环小数叫无理数,例如:π=3.1415926…

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根;0的平方根为0;负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;

  ③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项...

与数学知识点总结相关的实用资料

初中数学知识点总结2022(最新)

数学知识点总结 最新初中数学知识点总结

  老师是带领我们走向成功的顶塔,刚进入学校的老师一般都会被要求,课后写教学笔记。教学笔记可以记录老师在课堂上存在的问题,请您阅读小编辑为您编辑整理的《初中数学知识点总结2022(最新)》,供大家借鉴和使用,希望大家分享!

初中数学知识点总结2022(最新)(篇一)

  初中数学基础知识点

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  初中数学平行四边形的性质知识点

  1.定义:两组对边分别平行的四边形叫平行四边形

  2.平行四边形的性质

  (1)平行四边形的对边平行且相等;

  (2)平行四边形的邻角互补,对角相等;

  (3)平行四边形的对角线互相平分;

  3.平行四边形的判定

  平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:

  第一类:与四边形的对边有关

  (1)两组对边分别平行的四边形是平行四边形;

  (2)两组对边分别相等的四边形是平行四边形;

  (3)一组对边平行且相等的四边形是平行四边形;

  第二类:与四边形的对角有关

  (4)两组对角分别相等的四边形是平行四边形;

  第三类:与四边形的对角线有关

  (5)对角线互相平分的四边形是平行四边形

  初中数学函数知识点总结

  1.一次函数

  (1)定义:形如y=kx+b(k、b是常数,且k≠0)的函数,叫做一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)

  所以,正比例函数是特殊的一次函数。

  (2)一次函数的图像及性质:

  1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

  3正比例函数的图像总是过原点。

  4k,b与函数图像所在象限的关系:

  当k>0时,y随x的增大而增大;当k

  当k>0,b>0时,直线通过一、二、三象限;

  当k>0,b

  当k0时,直线通过一、二、四象限;

  当k

  当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k

与数学知识点总结相关的实用资料

初中数学知识点总结归纳(精选)

数学知识点归纳 精选初中数学知识点总结

  师者,传道受业解惑也。一般老师们都会关注自己上课的教学行为,从而课后整理出教学笔记。教学笔记可以帮助老师归纳总结教学经验,小编特地为大家精心收集和整理了“初中数学知识点总结归纳(精选)”,希望能对您有所帮助,请收藏。

初中数学知识点总结归纳(精选)【篇一】

  一、基本知识

  一、数与代数

  A、数与式:

  1、有理数:①整数→正整数,0,负整数;

  ②分数→正分数,负分数

  数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:带上符号进行正常运算。

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数

  无理数

  无理数:无限不循环小数叫无理数,例如:π=3.1415926…

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根;0的平方根为0;负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;

  ③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同...

与数学知识点总结相关的实用资料

初中数学知识点总结及公式大全(合集)

数学知识点总结 初中数学公式大全合集

  老师是教育与学生的桥梁,老师在教学活动结束后,通常会写教学笔记。教学笔记可以帮助老师完善教学方法和措施,考虑到您的需要,小编特地编辑了“初中数学知识点总结及公式大全(合集)”,但愿对您的学习工作带来帮助。

初中数学知识点总结及公式大全(合集)【篇一】

  一、基本知识

  一、数与代数

  A、数与式:

  1、有理数:①整数→正整数,0,负整数;

  ②分数→正分数,负分数

  数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:带上符号进行正常运算。

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数

  无理数

  无理数:无限不循环小数叫无理数,例如:π=3.1415926…

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根;0的平方根为0;负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;

  ③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:...

与数学知识点总结相关的实用资料

初中数学知识点总结归纳(完整版)

数学知识归纳 初中数学总结 初中数学知识梳理完整版

  很多同学在复习初中数学时,因为没有对之前的知识进行梳理记忆,导致整体的复习效率不高。下面是由出国留学网编辑为大家整理的“初中数学知识点总结归纳(完整版)”,仅供参考,欢迎大家阅读本文。

  初中数学知识点总结归纳

  1、菱形的定义 :有一组邻边相等的平行四边形叫做菱形。

  2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;

  ⑵ 菱形的四条边都相等;

  ⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  ⑷ 菱形是轴对称图形。

  提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

  3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)

  5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  6、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  7、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。

  8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

  9、中被开方数的取值范围:被开方数a≥0

  10、平方根性质:①一个正数的平方根有两个,它们互为相反数。②0的平方根是它本身0。③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

  11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。

  12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是0

  13、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

  14、求正数a的算术平方根的方法;

  完全平方数类型:①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。

  求正数a的算术平方根,只需找出平方后等于a的正数。

  初中数学重点知识归纳

  1、一元二次方程解法:

  (1)配方法:(X±a)²=b(b≥0)注:二次项系数必须化为1

  (2)公式法:aX²+bX+C=0(a≠0)确定a,b,c的值,计算b²-4ac≥0

  若b²-4ac>0则有两个不相等的实根,若b²-4ac=0则有两个相等的实根,若b²-4ac<0则无解

  若b²-4ac≥0则用公式X=-b±√b²-4ac/2a注:必须化为一般形式

  (3)分解因式法

  ①提公因式法:ma+mb=0→m(a+b)=0

  平方差公式:a²-b²=0→(a+b)(a-b)=0

  ②运用公式法:

  完全平方公式:a²±2ab+b²=0→(a±b)²=0

  ③十字相乘法

  2、锐角三角函数定义...

与数学知识点总结相关的中考数学

高二下学期数学知识点总结归纳

高二数学知识总结 高二下学期知识整理 高二下册数学知识点归纳

  有很多同学在复习高二下学期数学时,因为之前没有做过系统的总结,导致复习知识时整体效率低下。下面是由出国留学网编辑为大家整理的“高二下学期数学知识点总结归纳”,仅供参考,欢迎大家阅读本文。

  高二数学下学期知识点1

  极值的定义:

  (1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)

  (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。

  极值的性质:

  (1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小;

  (2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;

  (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;

  (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。

  求函数f(x)的极值的步骤:

  (1)确定函数的定义区间,求导数f′(x);

  (2)求方程f′(x)=0的根;

  (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。

  高二数学下学期知识点2

  1.定义法:

  判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可。

  2.转换法:

  当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

  3.集合法

  在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

  若A?B,则p是q的充分条件。

  若A?B,则p是q的必要条件。

  若A=B,则p是q的充要条件。

  若A?B,且B?A,则p是q的既不充分也不必要条件。

  高二数学下学期知识点3

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx(k为常数,k≠0)

  二、一次函数的性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b(k为任意不为零的实数b取任何实数)

  2.当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1.作法与图形:通过如下3...

与数学知识点总结相关的高考数学

初一上学期数学知识点总结大全

初一上册数学知识总结 初一上学期数学知识归纳

  很多学生在复习初一上学期数学时,因为之前没有做过系统的总结,导致复习整体效率不高。下面是由出国留学网编辑为大家整理的“初一上学期数学知识点总结大全”,仅供参考,欢迎大家阅读本文。

  初一上学期数学知识点总结

  一、代数式

  1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

  2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

  二、整式

  1、单项式:

  (1)由数和字母的乘积组成的代数式叫做单项式。

  (2)单项式中的数字因数叫做这个单项式的系数。

  (3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  2、多项式

  (1)几个单项式的和,叫做多项式。

  (2)每个单项式叫做多项式的项。

  (3)不含字母的项叫做常数项。

  3、升幂排列与降幂排列

  (1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

  (2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

  三、整式的加减

  1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

  去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

  2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  合并同类项:

  (1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

  (2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  (3)合并同类项步骤:

  a.准确的找出同类项。

  b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

  c.写出合并后的结果。

  (4)在掌握合并同类项时注意:

  a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

  b.不要漏掉不能合并的项。

  c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

  说明:合并同类项的关键是正确判断同类项。

  3、几个整式相加减的一般步骤:

  (1)列出代数式:用括号把每个整式括起来,再用加减号连接。

  (2)按去括号法则去括号。

  (3)合并同类项。

  4、代数式求值的一般步骤:

  (1)代数式化简

  (2)代入计算

  (3)对于某些特殊的代数式,可采用“整体代入”进行计算。

  图形的初步认识

  一、立体图形与平面图形

  1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

  2、...

与数学知识点总结相关的中考数学

高二上学期数学知识点归纳(非常实用)

高二上学期数学重点知识 数学知识点总结 高中数学知识点归纳

  对数学知识点进行系统地总结,查漏补缺,再去练习,能够提高自己的学习效率。下面是由出国留学网编辑为大家整理的“高二上学期数学知识点归纳(非常实用)”,仅供参考,欢迎大家阅读本文。

  高二数学上学期知识点总结1

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题 否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

  3、逻辑联结词:

  ⑴且(and) :命题形式 p q; p q p q p q p

  ⑵或(or):命题形式 p q; 真 真 真 真 假

  ⑶非(not):命题形式 p . 真 假 假 真 假

  “或命题”的真假特点是“一真即真,要假全假”;

  “且命题”的真假特点是“一假即假,要真全真”;

  “非命题”的真假特点是“一真一假”

  4、充要条件

  由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

  5、全称命题与特称命题:

  短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号 表示。含有全体量词的命题,叫做全称命题。

  短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。

  高二数学上学期知识点总结2

  一定义

  集合是高中数学中最原始的不定义的概念,只给出描述性的说明。某些确定的且不同的对象集在一起就成为集合。组成集合的对象叫做元素。

  二集合的抽象表示形式

  用大写字母A,B,C??表示集合;用小写字母a,b,c表示元素。

  三元素与集合的关系

  有属于,不属于关系两种。元素a属于集合A,记作aA;元素a不属于集合A,记作aA。

  四几种集合的命名

  有限集:含有有限个元素的集合;无限集:含有无限个元素的集合;空集:不包含任何元素的集合叫做空集,用表示;自然数集:N;正整数集:N_或N+;整数集:Z;有理数集:Q;实数集:R。

  五集合的表示方法

  (一)列举法:把元素一一列举在大括号内的表示方法,例如:{a,b,c}。注意:凡是以列举法形式出现的集合,往往考察元素的互异性。

  (二)描述法:有以下两种描述方式

  1.代号描述:【例】方程2x3x+2=0的所有解组成的集合,可表示为{x|x2-3x+2=0}。x是集合中元素的代号,竖线也可以写成冒号或者分号,竖线后面的式子的作用是描述集合中的元素符合的条件。

  2.文字描述:将说明元素性质的一句话写在大括号内。【例】{大于2小于5的整数};描述法表示的集合一旦出现,首先需要分析元素的意义,也就说要判断元素到底是什么。

  (三)韦恩图法:用图形表示集合定义了两个集合之间的所有关系。子集有两种极限...

与数学知识点总结相关的高考数学

九年级数学知识点总结归纳(完整版)

九年级数学总结 初中数学知识归纳 数学知识点归纳完整版

  初三也是人生阶段中比较重要的一年,数学知识一定要掌握好,才能不拖其它科目的后腿,下面是由出国留学网编辑为大家整理的“九年级数学知识点总结归纳(完整版)”,仅供参考,欢迎大家阅读本文。

  九年级数学知识点总结归纳(完整版)

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是1,

  1、这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:

  去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  2、不等式与不等式组

  不等式:

  ①用符号”=“号连接的式子叫不等式。

  ②不等式的两边都加上或减去同一个整式,不等号的方向不变。

  ③不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

  一元一次不等式组:

  ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  ③求不等式组解集的过程,叫做解不等式组。

  3、函数

  变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

  一次函数:

  ①若两个变量C,D间的关系式可以表示成D=KC+B(B为常数,K不等于0)的形式,则称D是C的一次函数。

  ②当B=0时,称D是C的正比例函数。

  初三数学上册知识点归纳

  1.数的分类及概念数系表:

  说明:分类的原则:1)相称(不重、不漏)2)有标准

  2.非负数:正实数与零的统称。(表为:a0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3.倒数:

  ①定义及表示法

  ②性质:A.a1/a(a1);B.1/a中,aC.0

  4.相反数:

  ①定义及表示法

  ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

与数学知识点总结相关的中考数学

推荐更多