出国留学网专题频道GRE数学排列组合栏目,提供与GRE数学排列组合相关的所有资讯,希望我们所做的能让您感到满意!

2017年GRE数学排列组合题解题步骤分析与运用

GRE数学解题步骤 GRE数学

  “2017年GRE数学排列组合题解题步骤分析与运用”由出国留学网GRE考试栏目诚心为您整理,更多精彩内容,请继续关注我们的更新!

  排列组合题解题步骤

  首先我们把GRE排列组合数学题型分为两类:可“区分”的叫做排列;不可“区分”的叫做组合。用下列步骤来作一切的排列组合题:

  (1)先考虑是否要分情况考虑

  (2)先计算有限制或数目多的字母,再计算无限制,数目少的字母

  (3)在计算中永远先考虑组合:先分配,再如何排(先取再排)

  实例讲解

  例子:

  8封相同的信,扔进4个不同的邮筒,要求每个邮筒至少有一封信,问有多少种扔法?

  第一步:需要分类考虑(5个情况)既然信是一样的,邮筒不一样,则只考虑4个不同邮筒会出现信的可能性。

  第二步:计算数目多或者限制多的字母,由于信一样就不考虑信而考虑邮筒,从下面的几个情况几列式看出每次都从限制多的条件开始作。先选择,再考虑排列。

  5个情况如下:

  a. 5 1 1 1:4个邮筒中取一个邮筒放5封信其余的3个各放一个的分法:C(4,1)=4

  b.4 2 1 1:同上,一个邮筒4封信,其余三个中间一个有两封,两个有一封:C(4,1) * C(3,1)=12

  c. 3 3 1 1: C(4,2) =6

  d. 3 2 2 1: C(4,1) * C(3,2) = 12

  e. 2 2 2 2 :1

  4+12+6+12+1=35种放法

...

与GRE数学排列组合相关的GRE数学

GRE数学排列组合解题步骤

GRE数学解题步骤 GRE数学题型 GRE数学

  为了帮助考生们更好地备考GRE,出国留学网GRE栏目为大家带来“GRE数学排列组合解题步骤”,希望对大家有所帮助哦!

  排列组合题解题步骤

  首先我们把GRE排列组合数学题型分为两类:可“区分”的叫做排列;不可“区分”的叫做组合。用下列步骤来作一切的排列组合题:

  (1)先考虑是否要分情况考虑

  (2)先计算有限制或数目多的字母,再计算无限制,数目少的字母

  (3)在计算中永远先考虑组合:先分配,再如何排(先取再排)

  实例讲解

  例子:

  8封相同的信,扔进4个不同的邮筒,要求每个邮筒至少有一封信,问有多少种扔法?

  第一步:需要分类考虑(5个情况)既然信是一样的,邮筒不一样,则只考虑4个不同邮筒会出现信的可能性。

  第二步:计算数目多或者限制多的字母,由于信一样就不考虑信而考虑邮筒,从下面的几个情况几列式看出每次都从限制多的条件开始作。先选择,再考虑排列。

  5个情况如下:

  a. 5 1 1 1:4个邮筒中取一个邮筒放5封信其余的3个各放一个的分法:C(4,1)=4

  b.4 2 1 1:同上,一个邮筒4封信,其余三个中间一个有两封,两个有一封:C(4,1) * C(3,1)=12

  c. 3 3 1 1: C(4,2) =6

  d. 3 2 2 1: C(4,1) * C(3,2) = 12

  e. 2 2 2 2 :1

  4+12+6+12+1=35种放法

  以上就是关于GRE数学排列组合题的解题方法指导。其实,GRE数学题考查的知识点本身并不复杂,大家只要把考试涉及到的知识点都仔细看一遍,充分理解并学会运用,那么在GRE数学备考中就会更加游刃有余,在数学部分取得高分自然也就不在话下了。

  GRE数学栏目推荐:

  GRE数学逆向推理法

  GRE数学:关于算术的重点试题练习(附答案)

  GRE数学常考公式...

与GRE数学排列组合相关的GRE数学

GRE数学排列组合解析

GRE数学排列组合 GRE数学解析 GRE数学

  同学们在备考GRE的时候要多多查阅资料哦,出国留学网GRE栏目为大家提供GRE数学排列组合解析,希望对大家备考GRE有所帮助!

  GRE数学排列组合解析

  1.排列(permutation):

  从N个东东(有区别)中不重复(即取完后不再取)取出M个并作排列,共有几种方法:P(M,N)=N!/(N-M)!

  例如:从1-5中取出3个数不重复,问能组成几个三位数?

  解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60

  也可以这样想从五个数中取出三个放三个固定位置

  那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个,....4.....,那么第三个位置……3……

  所以总共的排列为5*4*3=60

  同理可知如果可以重复选(即取完后可再取),总共的排列是5*5*5=125

  2.组合(combination):

  从N个东东(可以无区别)中不重复(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法

  C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M!

  C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10

  可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,

  那末他们之间关系就有先做组合再作M的全排列就得到了排列

  所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式

  性质:C(M,N)=C( (N-M), N )

  即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=10

  3.概率

  概率的定义:P=满足某个条件的所有可能情况数量/所有可能情况数量

  概率的性质 :0<=P<=1

  1)不相容事件的概率:

  a,b为两两不相容的事件(即发生了a,就不会发生b)

  P(a或b)=P(a)+P(b)

  P(a且b)=P(a)+P(b)=0 (A,B不能同时发生)

  2)对立事件的概率:

  对立事件就是a+b就是全部情况,所以不是发生a,就是b发生,但是,有一点a,b不能同时发生.例如:

  a:一件事不发生

  b:一件事发生,则A,B是对立事件

  显然:P(一件事发生的概率或一件事不发生的概率)=1(必然事件的概率为1)

  则一件事发生的概率=1 - 一件事不发生的概率...........公式1

  理解抽象的概率最好用集合的概念来讲,否则结合具体体好理解写

  a,b不是不相容事件(也就是说a,b有公共部分)分别用集合A和集合B来表示

与GRE数学排列组合相关的GRE数学

GRE数学 排列组合解析

GRE数学

 GRE数学 排列组合解析

  1.排列(permutation):

  从N个东东(有区别)中不重复(即取完后不再取)取出M个并作排列,共有几种方法:P(M,N)=N!/(N-M)!

  例如:从1-5中取出3个数不重复,问能组成几个三位数?

  解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60

  也可以这样想从五个数中取出三个放三个固定位置

  那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个,....4.....,那么第三个位置……3……

  所以总共的排列为5*4*3=60。

  如果可以重复选(即取完后可再取),总共的排列是5*5*5=125

  2.组合(combination):

  从N个东东(可以无区别)中不重复(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法:

  C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M!

  C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10

  可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,

  那末他们之间关系就有先做组合再作M的全排列就得到了排列

  所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式

  性质:C(M,N)=C( (N-M), N )

  即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=10

...

与GRE数学排列组合相关的GRE数学

4月gre考试辅导:2013gre数学排列组合题型预测

gre数学 2013gre考试

  1.排列(permutation):

  从N个东东(有区别)中不重复(即取完后不再取)取出M个并作排列,共有几种方法:P(M,N)=N!/(N-M)!

  例如:从1-5中取出3个数不重复,问能组成几个三位数?

  解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60

  也可以这样想从五个数中取出三个放三个固定位置

  那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个,....4.....,那么第三个位置……3……

  所以总共的排列为5*4*3=60。

  如果可以重复选(即取完后可再取),总共的排列是5*5*5=125

  2.组合(combination):

  从N个东东(可以无区别)中不重复(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法:

  C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M!

  C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10

  可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,

  那末他们之间关系就有先做组合再作M的全排列就得到了排列

  所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式

  性质:C(M,N)=C( (N-M), N )

  即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=10

  以上是有关备考新gre数学排列组合常考题型解析,虽然数学是我们的强项,但是也不能疏忽大意,难点要攻克,争取把我们的优势发挥到最好。

...

与GRE数学排列组合相关的GRE数学

2013年新gre考试:gre数学排列组合考点分析

新gre考试 gre数学

  1.排列(permutation):

  从N个东东(有区别)中不重复(即取完后不再取)取出M个并作排列,共有几种方法:P(M,N)=N!/(N-M)!

  例如:从1-5中取出3个数不重复,问能组成几个三位数?

  解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60

  也可以这样想从五个数中取出三个放三个固定位置

  那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个,....4.....,那么第三个位置……3……

  所以总共的排列为5*4*3=60。

  如果可以重复选(即取完后可再取),总共的排列是5*5*5=125

  2.组合(combination):

  从N个东东(可以无区别)中不重复(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法:

  C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M!

  C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10

  可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,

  那末他们之间关系就有先做组合再作M的全排列就得到了排列

  所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式

  性质:C(M,N)=C( (N-M), N )

  即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=10

  以上是有关备考新gre数学排列组合常考题型解析,虽然数学是我们的强项,但是也不能疏忽大意,难点要攻克,争取把我们的优势发挥到最好。

...

与GRE数学排列组合相关的GRE数学

GRE考试:2013GRE数学排列组合讲解

GRE数学解答

  GRE改革减少了词汇量的考察,也相应的提高了逻辑阅读能力和GRE数学的难度,因此大家要在备考的时候对于这些方面需要多加练习和注意。下面我们以练习题为例为大家实例讲解GRE数学排列组合如何解答:

  1:A, B独立事件,一个发生的概率是0.6 ,一个是0.8,问:两个中发生一个或都发生的概率 ?

  解答:

  P=P(A且!B)+P(B且!A)+P(A且B)

  =0.6*(1-0.8)+0.8*(1-0.6)+0.6*0.8=0.92

  另一个角度,所求概率P=1-P(A,B都不发生)

  =1-(1-0.8)*(1-0.6)=0.92

  2:一道概率题:就是100以内取两个数是6的整倍数的概率

  解答:100以内的倍数有6,12,18,...96共计16个

  所以从中取出两个共有16*15种方法,从1-100中取出两个数的方法有99*100种,所以P=(16*15)/(99*100)=12/505=0.024

  3:1-350 inclusive 中,在100-299inclusive之间以3,4,5,6,7,8,9结尾的数的概率

  因为100-299中以3,4,5,6,7,8,9结尾的数各有20个,所以

  Key:(2*10*7)/350=0.4

  4.在1-350中(inclusive),337-350之间整数占的百分比

  Key:(359-337+1)/350=4%

  5.在E发生的情况下,F发生的概率为0.45,问E不发生的情况下,F发生的概率与0.55比大小

  解答:看了原来的答案,我差点要不考G了.无论柳大侠的推理还是那个哥哥的图,都太过分了吧?其实用全概率公式是很好解决这个问题的,还是先用白话文说一遍吧:

  某一个事件A的发生总是在一定的其它条件下如B,C,D发生的,也就是说A的概率其实就是在,B,C,D发生的条件下A发生的概率之和.A在B发生时有一个条件概率,在C发生时有一个条件概率,在D发生时有一个条件概率,如果B,C,D包括了A发生的所有的条件.那么,A的概率不就是这几个条件概率之和么。

  P(A)=P(A|B)+P(A|C)+P(A|D)

  好了,看看这个题目就明白了.F发生时,E要么发生,要么不发生,OK?

  所以,P(F)=P(F|E)+P(F|!E) 感觉上也没错吧? 给了P(F|E)=0.45,所以

  P(F|!E)= P(F)-P(F|E)= P(F)-0.45

  P(F|!E)= P(F)-P(F|E)= P(F)-0.45

  如果P(F)=1,那么P(F|!E)=0.55

  如果0.45=

  上述就是有关gre数学排列组合如何解答的示例讲解,虽然新gre数学部分难度系数有所提高,但相信我们国内考生能够从容应对。

...

与GRE数学排列组合相关的GRE数学

新GRE数学:排列组合和概率题目

组合
 gre改革,也相应的提高了gre数学的难度,所以考生在答新gre数学试题时,一定要细心认真,把握好时间,最好有做完检查的时间,尽量在新gre数学部分获取高分。
  1、15人中取5人,有3个不能都取,有多少种取法?

  C155 –C122

  2、7人比赛,A在B的前面的可能性有多少种

  P77 / 2 A在B前的次数与在其后的次数相等

  3、3对人分为A,B,C三组,考虑组顺和组中的人顺,有多少种分法?

  P33 ×(P22 )3 先考虑组顺,再考虑人顺

  4、17个人中任取3人分别放在3个屋中,其中7个只能在某两个屋,另外10个只能在另一个屋,有多少种分法?

  P72 P101

  5、A,B,C,D,E,F排在1,2,3,4,5,6这六个位置,问A不在1,B不在2,C不在3的排列的种数?

  P66 -3P55 +3P44 -P33 (先取总数,后分别把A放1,B放2, C放3,把这个数量算出,从总数中减去即可,建议用三个同样的环相互交错取总数的方法计算)

  6、4幅大小不同的画,要求两幅最大的排在一起,有多少种排法?

  2P33

  7、5辆车排成一排,1辆黄色,1两蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?

  P55 /P33 如果再加一个条件2辆不可分辨的白色车,同理:P77 /P33 P22

  8、4对夫妇,从中任意选出3人组成一个小组,不能从任一对夫妇中同时选择两人,问符合选择条件的概率是多少?

  (C83 –C61 C41 )/C83

  9、从6双不同的手套中任取4只,求其中恰有一双配对的概率。

  C61 C52 C21 C21 /C124

  10、3个打字员为4家公司服务,每家公司各有一份文件录入,问每个打字员都收到文件的概率?

  (C42 C21 )C31 /34 先把文件分为2,1,1三堆,然后把这三堆文件分给三个打字员。

  虽然新版gre数学部分难度系数有所提高,但相信我们国内考生能够从容应对,以上即是新东方网搜索整理的有关新gre数学排列组合和概率题目解析,希望能对广大考生有所帮助。

...

与GRE数学排列组合相关的GRE数学

新gre数学排列组合题型解题技巧

与GRE数学排列组合相关的考生经验

新gre数学排列组合题型解题技巧

新gre数学 解题技巧

  gre数学部分排列组合的内容也是经常会考到的,考生如果想拿到这类题型的分数,必须要先掌握gre数学部分排列组合概念和基本公式。下面我们就给大家简单地介绍一下相关知识。

  排列(permutation)组合(combination)

  (一)概念

  1.排列与组合的区别:

  将一个事件内的元素的顺序调换,如果这个事件不变,那么是组合问题;如果这个事件改变,那么是排列问题。

  排列问题要考虑位置关系,组合问题不需要考虑位置关系。

  2.乘法原理与加法原理:

  乘法原理:要完成一件事情,如果要分为n个步骤,第k类方法有m*k种方法,那么完成这件事情的方法总数为:m1*m2*m3……mn。

  加法原理:要完成一件事情,如果有n类方法,第k类方法有m*k种方法,那么完成这件事情的方法总数为:m1+m2+m3……+mn。

  (二)基本公式:

  从n个不同的元素中任取m个不同的元素的排列数为:

  

  gre数学部分排列组合其实除了考察考生的公式运算能力,也比较锻炼考生的逻辑思维。只要考生平时多注意练习和总结,相信这部分一定不成问题。

与GRE数学排列组合相关的GRE数学

推荐更多