出国留学网专题频道考研数学知识点栏目,提供与考研数学知识点相关的所有资讯,希望我们所做的能让您感到满意!

2023年考研数学易错知识点内容分析盘点

考研 考研数学 考研数学知识点

  在考研的复习过程中,数学这一科的复习任务对于考生来说是一项十分艰巨的任务,很多考生都是在复习过程中在数学这一科上花费过多时间导致复习计划无法顺利完成,那么接下来小编就为大家带来2023年考研数学易错知识点内容分析盘点,一起来看看吧!

  一、几个易混淆的考研数学概念

  连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系是怎么样的?存在极 限,导函数连续,左连续,右连续,左极 限,右极 限,左导数,右导数,导函数的左极 限,导函数的右极 限。

  二、罗尔定理

  设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连通端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。

  三、泰勒公式展开的应用专题

  相信很多同学看到泰勒公式就哆嗦,因为乍一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在搞明白以下几点后,这样的症状就能够消失了。1.什么情况下要进行泰勒展开;2.以哪一点为中心进行展开;3.把谁展开;4.展开到几阶?

  四、应用多次中值定理的专题:

  大部分的考研数学题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,敏感性是靠自己多练习综合题培养出来的。比如经常去复习,那样对中值定理的题目早已没有那种刚学高数时的害怕之极。

  五、对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:

  这类考研数学题型几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。

考研初试各科分数组成:

  政治:

  马原24分,毛特30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分,满分100分。

  英语:<...

与考研数学知识点相关的考研数学

2023年考研数学线性代数各章节考试重要知识点内容分析

考研 考研数学 考研数学知识点

  在今年的12月24日,各位考研人们就要踏上2023年的研究生招生考试,在开考之前的复习时间里,各位考生对于数学这一考试科目的复习知识点掌握的如何呢?快和小编一起来看看2023年考研数学线性代数各章节考试重要知识点内容分析吧!

  一、第一章行列式

  本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。数值型行列式的计算不会以单独题目的形式考查,但是在解决线性方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的计算而抽象型行列式的计算问题会以填空题的形式展现,在历年考研中可以找到有关抽象型行列式的计算问题。

  因此,广大考生在复习期间行列式这块要做到利用行列式的性质及展开定理熟练的、准确的计算出数值型行列式的值,不论是高阶的还是低阶的都要会计算另外还要会综合后面的知识会计算简单的抽象行列式的值。

  二、第二章矩阵

  本章需要重点掌握的基本概念有可逆矩阵、伴随矩阵、分块矩阵和初等矩阵,可逆阵与伴随矩阵的相关性质也很重要,也是需要考生掌握的。除了这些就是矩阵的基本运算,可以将矩阵的运算分为两个层次:

  1、矩阵的符号运算

  2、具体矩阵的数值运算

  矩阵的符号运算就是利用相关矩阵的性质对给出的矩阵等式进行化简,而具体矩阵的数值运算主要指矩阵的乘法运算、求逆运算等。

  三、第三章向量

  本章的重点有:

  1、向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。

  2、向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。

  四、第四章线性方程组

  本章的重点是利用向量这个工具解决线性方程组解的判定及解的结构问题。题目基本没有难度,但是考生在复习的时候要注意将向量与线性方程组两章的知识内容联系起来,学会融会贯通。

  五、第五章特征值与特征向量

  本章的基本要求有三点:

  1、要会求特征值、特征向量

  对于具体给定的数值型矩阵,一般方法是经过特征方程∣&lambdaE-A∣=0求出特征值,然后经过求解齐次线性方程组(&lambdaE-A)&xi=0的非零解得出对应特征值的特征向量而对于抽象的矩阵来说,在求特征值时主要考虑利用定义A&xi=&lambda&xi,另外还要注意特征值与特征向量的性质及其应用。

  2、矩阵的相似对角化问题

  要求掌握一般矩阵相似对角化的条件,但是重点是实对称矩阵的相似对角化,即实对称矩阵的正交相似于对角阵。这块的知识出题比较灵活,可直接出题,也可以根据矩阵A的特征值、特征向量来确定矩阵A中的参数或者确定矩阵A另外由于实对称矩阵不同特征值的特征向量是相互正交的,这样还可以由已知特征值&l...

与考研数学知识点相关的考研数学

2023年考研数学线性代数考察方式及考试重要考点内容分析

考研 考研数学 考研数学知识点

  考研数学往往是考研人们在复习过程中花费精力最多的一门考试,对于高数和线性代数的双重折磨,很多考生表示不想再体验第二次,那么接下来小编就为大家带来2023年考研数学线性代数考察方式及考试重要考点内容分析,快来看看吧!

  考察方式:

  一、客观题(选择题和填空题)

  常考查矩阵的性质、计算以及向量的线性相关性等知识点。向量的线性相关性是比较难的一部分内容,大家复习的时候要记住相关的结论并深刻理解,最好是能够自己试着证明结论,这样有助于巩固掌握相关结论。而矩阵的性质及运算,是每年客观题考查的最多的,像初等矩阵的运算、伴随矩阵的性质、矩阵的秩、矩阵合同、矩阵相似等等,非常多而且联系紧密,需要我们在复习的时候总结,做题的时候看用到哪个知识点,把它们摘列在笔记本上。如果做题多了,你会发现有些性质是常考考点,几乎每年都考,而且这些性质是怎么考的,什么时候该用这些性质,在试题或是模拟题中都有着规律的反映。

  二、解答题

  近几年来看,都是考查计算题的,或者以计算为考查内容的证明题。其中,线性方程组是经常考的,或者考查向量的线性表出问题,实际上也可以归结为线性方程组的问题,一个向量能否或是如何由一组向量来线性表示,也就是考查相应的非齐次线性方程组是否有解或是通解(解)是什么样的。另外,对于解的结构,也需要大家深入理解,给出解的形式,要能够知道相应的系数矩阵的性质。所以,大家复习的时候一定要掌握齐次和非齐次线性方程组的解法,不但要知道如何解,还要能够快速准确的解出来;同时,还要弄清楚解线性方程组和相应的向量问题是如何转化的。而特征值和特征向量,不但是重要考点,同时也是难点之一,也是解答题考查的内容。最近几年考题,不再是简单的给出一个矩阵,然后求特征值特征向量,求相似对角化的问题了。常见的形式,是不给出矩阵,而是给出部分特征值或部分特征向量,让大家反过来求出矩阵,或是相似对角化。这样的问题,就需要我们对特征值的概念、性质有很深的理解,对于常用的性质结论也要掌握的非常熟悉,比如特征值和行列式的关系,特征值和迹的关系等等。只有这样才可能解的出来。二次型的问题可以转化为相似对角化的问题,因为二次型和它的实对称矩阵是一一对应的。这样就归于前面的问题了。

  综合来看,线性代数的内容没有高数那么多,但是知识体系相对比较松散,大家容易找不到重点。复习的时候,要对照考试大纲,分析清楚哪部分内容考查大家的方式是怎样的,性质定理该归纳的归纳,该理解的理解。更重要的,一定要强化训练,不但要清楚一道题怎么解,更要实实在在的把它写出来,“眼高手低”是很多复习线代的同学的通病。及时总结,强化练习。

  重要考点:

  一、行列式部分,强化概念性质,熟练行列式的求法

  在这里提醒各位考生,行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。

  二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用

  经...

与考研数学知识点相关的考研数学

2023年考研数学线性代数考试知识点内容分析梳理及解题技巧

考研 考研数学 考研数学知识点

  在考研数学中,不管是考哪一类的数学,都逃不开高数和线性代数,所以各位考生在复习当中对于高数和线性代数的学习就显得尤为重要,那么接下来小编就为大家带来2023年考研数学线性代数考试知识点内容分析梳理及解题技巧,一起来看看吧!

  线性代数一共六章的内容。

  其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。

  行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。

  在历年的考研真题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。

  特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。

  通过对历年真题的研究分析可以得出,对基本概念、基本性质和基本方法的考查才是考研数学的重点,真题中所谓的难题也都是在基础概念、基本性质及基本方法上进行加深的,这一点在线性代数这个模块上体现的更加明显。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基础知识。

  对于线性代数中的基本运算,行列式的计算(数值型、抽象型),求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关性的判定,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量,判断矩阵是否可以相似对角化,求相似对角矩阵,用正交变换法化实对称矩阵为对角矩阵,用正交变换化二次型为标准形等等。一定要注意总结这些基本运算的运算方法。例如,复习行列式的计算时,就要将各种类型的行列式计算方法掌握清楚,如,行(列)和相等型、爪型、三对角线型,范德蒙行列式等等。

  大家复习时一定要注重知识点的衔接与转换,不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。比如,在复习过程中,我们可以以方程组解的讨论为复习主线,弄清楚它与行列式、向量、矩阵、特征值与特征向量之间有什么样的关系,掌握他们...

与考研数学知识点相关的考研数学

2023年考研数学重要知识点内容分析(级数常见四大考点)

考研 考研数学 考研数学知识点

  各位考研人们在复习备考的过程中面对数学,是否有高效率的学习方法帮助自己备考呢?下面的内容是出国留学网小编为大家整理的2023年考研数学重要知识点内容分析,欢迎大家阅读,关注本站即可获取更多精彩资讯!

  一、常数项级数的敛散性的判别

  十年中2009和2014年考过两次常数项级数的敛散性的判别, 2014年的这个题很多考生基本上得了零分,常数项级数的敛散性的判别是一个难点:这个题考了三角函数的和差化积和比较审敛法。其实若从历年考研数学一的考题中,我们可以归纳总结出对常数项级数的考查,考研考查的方法重点是比较审敛法,而作为基准级数的是P-级数。

  二、幂级数的收敛域及和函数

  考生可以看到,对级数这一章,数一的同学要将幂级数的和函数作为重点知识来复习,十年中幂级数的和函数的考题最多。幂级数的和函数又分为先导后积、先积后导。两种方法大家都要掌握。

  三、幂级数的展开式

  考生可以将高数上册的泰勒展开式做一个拓展就是高数下册的幂级数的展开式,考研考查的主要是几何级数展开式。

  四、傅里叶的展开式

  2008年数学一考了一个傅里叶的展开式,傅里叶的展开式一般对数一的同学来说以小题的形式考的,但2008年出了黑马,这个题提醒考生在数学的学习过程中要复习全面,不可以有所偏颇,但在复习过程中要把握复习深度,对傅里叶级数的掌握只需掌握基础知识即可。

  针对高数中的这一难点,22的考生在未来的学习过程中应该制定详细的复习规划:

  1)、基础过关 5-6 月,高数:同济六版;线代:同济五版;概率:浙大四版。系统复习,夯实基础:熟练掌握基本概念、基本理论和基本方法

  2)、专题训练 7月---9月,针对常考的题型进行大量的练习,归纳题型,总结方法,突破重难点题型、方法和技巧

  3)、综合突破 10月---11月,对综合题进行窜讲,形成对考研的整体认识,将知识体系结构搭建起来。

  4)、全真模拟 11月---12月,转化为得分,现场模拟考研是什么样子,查漏补缺,实战演练

  5)、考前攻坚 12月(考前两周),回归基础、攻克难点

  有了科学的数学复习规划,考生做的最重要的事是实施计划,考生们应该明白,学好数学是一个长期的过程,来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,不管考试如何变化,都能取得好的成绩。相信经过有计划的复习,每个考生都可以使自己的综合解题能力有一个质的提高,从而在最后的实考中坦然的面对试题的变化,考出好的成绩。

  考研初试各科分数组成:

  政治:

  马原24分,毛特30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分,满分100分。

与考研数学知识点相关的考研数学

2023年考研数学备考知识点内容整理合集(4)

考研 考研数学 考研数学知识点

  在考研的复习当中,考研数学这一考试科目不一定是花费时间最长的科目,但一定是考生们复习的最痛苦的科目,因为考试难度大,让一众考验人望而生畏,那么接下来小编就为大家带来2023年考研数学备考知识点内容整理合集,大家快来看看吧!

  不定积分的计算

  不定积分是微积分中的重要概念,其计算也是重要运算。在近年来的考研真题中多次出现,其多为综合性的解答题,难度多为中等难度,应该熟练掌握。而定积分也是微积分中的重要概念,定积分的性质变化多样,是我们考研中所常见的内容。有些单独成题,有些嵌入计算题之中。有些题是考查性质的结论,有些题目是考查性质条件的掌握,比较灵活多变,此类题目多见于选择题和填空题,其难度为中等难度。接下来就为大家详细讲解积分的计算方法及注意事项。

  关于不定积分的计算方法,我们有换元法和分部积分法。其中换元法又分为第一类换元法(凑微分)和第二类换元法。对于含有根号的积分,通常是先换元,以消去根式符号。而有些题目在用分部积分法时,要先对被积函数变形,使得运算的式子简化了,也减少了出现运算错误的可能性,倘若你做这类题不这样对被积函数进行变形,而是直接利用分部积分法计算,将使运算变得复杂化,这种情况也是考生所遇到的典型问题。

  关于定积分,其计算方法除不定积分中的方法外,还有一些特殊情形要求我们要掌握的。比如对称区间上的定积分,我们在做这类题时,首先要先注意下其被积函数的奇偶性。

  对于对称区间上的被积函数奇偶性来考虑题,可能大部分同学是知晓的。而有一些题目我们往往是用定积分的几何意义来简化求解的,而对用利用定积分的几何意义来做题,是相当多的学生所不知道的。除了对称区间上的以为,对于具有周期性的被积函数我们在做题时也要非常谨慎的待。

  若,则有: 积分值与积分的起点和终点无关,与积分长度有关。对于这种周期函数的积分性质也是我们同学们要牢牢掌握的知识点。这样对于我们在做相关题目时会非常的方便和简单。

  变限积分也是我们考研中常考的内容,微分学中函数的各种性态的研究都曾以可变限积分函数出现于试题中,此类试题多出现于选择题、填空题、解答题,题目难度和不定积分、定积分的难度相当都属于中等难度的试题。而对于变限积分的求导也是我们要掌握的知识点,这个属于函数求导那一块的内容,要求我们熟练的掌握各类变限积分的求导方法。

  因此,关于一元函数积分学这一部分大都是出一些小的题型,但其内容在考研中属于很重要的地位,这就要求我们必须掌握这一部分的知识点和其各种性质。

  微积分常考题型汇总

  1.求给定函数的导数或微分(包括高阶段导数),包括隐函数和由参数方程确定的函数求导。

  2.利用罗尔定理,拉格朗定理,拉格朗日中值定理,柯西中值定理证明有关命题和不等式,如“证明在开区间至少存在一点满足……”,或讨论方程在给定区间内的根的个数等。

  此类题的证明,经常要构造辅助函数,而辅助函数的构造技巧性较强,要求读者既能从题目所给条件进行分析推导逐步引出所需的辅助函数,也能从所需证明的结论(或其变形)出发“递推”出所要构造的辅函数,此外,在证明中还经常用到函数的单调性判断和连续数的介值定理等。

  3.利用洛达法则求七种未定型的极限。

  4....

与考研数学知识点相关的考研数学

2023年考研数学备考知识点内容整理合集(3)

考研 考研数学 考研数学知识点

  在考研数学中,由于报考专业的不同,考研的数学科目被分成了数学一数学二和数学三这三种不同的考试类型,但不管哪一类,其组成部分都包含有高数和线性代数,那么接下来小编就为大家带来2023年考研数学中高数部分的备考知识点内容整理合集,快和小编一起来看看吧!

  高等数学命题规律分析

  1、侧重对数一、数三独有知识的考查。

考研数学一独有知识:大的模块有空间解析几何、多元积分(三重积分、曲线积分和曲面积分);数三独有的知识包括经济应用和级数(相对数二而言)。比如2014年考研试题中数一考了切平面方程,斯托克斯公式还有曲面积分;数三考了边际收益和幂级数求和展开。

  2、考查考生综合运用所学知识分析问题、解决问题的能力。

说白了就是应用题。比方上面提到的考研数三的经济应用,数二考到了形心质心。前者是导数的经济应用,后者是定积分的几何应用。

  3、考点覆盖较全。

这提示考生不要有侥幸心理,不要忽略次要考点,要做全面复习。这与把握重点是不矛盾的。这里可以把考研政治中的马克思主义哲学基本原理用过来:全面复习和把握重点的辩证统一。

  高数的9个高频易错考点

  1、函数连续是函数极限存在的充分条件。若函数在某点连续,则该函数在该点必有极限。若函数在某点不连续,则该函数在该点不一定无极限。

  2、若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续。

  3、基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。

  4、在一元函数中,驻点可能是极值点,也可能不是极值点。函数的极值点必是函数的驻点或导数不存在的点。

  5、无穷小量与有界变量之积仍是无穷小量。

  6、可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。

  7、在求极限的问题中,极限包括函数的极限和数列的极限,但在考试中一般出的都是函数的极限,求函数的极限中,主要是掌握公式,有些不常见的公式一定要记熟,这种类型的题一般属于简单题,但往更难一点的方向出题的话,它会和变上限的定积分联系在一起出题。

  8、在运用两个重要极限求函数极限的时候,一定要首先把所求的式子变换成类似于两个重要极限的形式,其次还需要看自变量的取极限的范围是否和两个重要极限一样。

  9、介值定理和零点定理的巧妙运用关键在于,观察和变换所要证明的式子的形式,构造辅助函数。

  考研初试各科分数组成:

  政治:

  马原24分,毛特30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分,满分100分。

  ...

与考研数学知识点相关的考研数学

2023年考研数学备考知识点内容整理合集(2)

考研 考研数学 考研数学知识点

  在考研公共课复习中,考研数学往往是考生们逃不掉躲不开的难关之一,毕竟数学这门学科其实只适合40%的人学习,那么大家在复习当中应该如何面对这门学科呢?快和小编一起来看看这份2023年考研数学备考知识点内容整理合集吧!

  导数与微积分

  1、考试内容

  (1)导数和微分的概念;

  (2)导数的几何意义和物理意义;

  (3)函数的可导性与连续性之间的关系;

  (4)平面曲线的切线和法线;

  (5)导数和微分的四则运算;

  (6)基本初等函数的导数;

  (7)复合函数、反函数、隐函数以及参数方程所确定的函数的微分法;

  (8)高阶导数;

  (9)一阶微分形式的不变性;

  (10)微分中值定理;

  (11)洛必达法则;

  (12)函数单调性的判别;

  (13)函数的极值;

  (14)函数图形的凹凸性、拐点及渐近线;

  (15)函数图形的描绘;

  (16)函数的最大值和最小值;

  (17)弧微分、曲率的概念;

  (18)曲率圆与曲率半径(其中16、17只要求数一、数二考试掌握,数三考试不要求)。

  2、考试要求

  (1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性与连续性之间的关系;

  (2)了解导数的物理意义,会用导数描述一些物理量(数一、数二要求,数三不要求);

  (3)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;

  (4)了解高阶导数的概念,会求简单函数的高阶导数;

  (5)会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;

  (6)理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理;

  (7)掌握用洛必达法则求未定式极限的方法;

  (8)理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用;

  (9)会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;

  (10)了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径(数一、数二要求、数三不要求)。

  3、常考题型

  (1)导数定义;

  (2)求显函数、隐函数、分段函数、积分上限函数、幂指函数等各种类型的导数与微分;

  (3)利用函数的单调性证明不等式;

  (4)求函数的极值与最值;

  (5)曲线的凹凸性、拐点、渐近线;

  (6)证明函数不等式;

  (7)方程根的存在性与个数;

  (8)洛必达法则求函数极限;

  (9)用介值定理、零点定理、罗尔定理、拉格朗日中值定理证明不等...

与考研数学知识点相关的考研数学

2023年考研数学备考知识点内容整理合集(1)

考研 考研数学 考研数学知识点

  2023年的研究生招生考试将在今年的年底开始举行正式的笔试考试,各位考生在复习备考的过程中是否也感觉到时间不够用呢?小编为了帮助大家的复习,为大家整理了2023年考研数学备考知识点内容整理合集,有需要的小伙伴们快来看看吧!

  不定积分的计算

  不定积分是微积分中的重要概念,其计算也是重要运算。在近年来的考研真题中多次出现,其多为综合性的解答题,难度多为中等难度,应该熟练掌握。而定积分也是微积分中的重要概念,定积分的性质变化多样,是我们考研中所常见的内容。有些单独成题,有些嵌入计算题之中。有些题是考查性质的结论,有些题目是考查性质条件的掌握,比较灵活多变,此类题目多见于选择题和填空题,其难度为中等难度。接下来就为大家详细讲解积分的计算方法及注意事项。

  关于不定积分的计算方法,我们有换元法和分部积分法。其中换元法又分为第一类换元法(凑微分)和第二类换元法。对于含有根号的积分,通常是先换元,以消去根式符号。而有些题目在用分部积分法时,要先对被积函数变形,使得运算的式子简化了,也减少了出现运算错误的可能性,倘若你做这类题不这样对被积函数进行变形,而是直接利用分部积分法计算,将使运算变得复杂化,这种情况也是考生所遇到的典型问题。

  关于定积分,其计算方法除不定积分中的方法外,还有一些特殊情形要求我们要掌握的。比如对称区间上的定积分,我们在做这类题时,首先要先注意下其被积函数的奇偶性。

  对于对称区间上的被积函数奇偶性来考虑题,可能大部分同学是知晓的。而有一些题目我们往往是用定积分的几何意义来简化求解的,而对用利用定积分的几何意义来做题,是相当多的学生所不知道的。除了对称区间上的以为,对于具有周期性的被积函数我们在做题时也要非常谨慎的待。

  若,则有: 积分值与积分的起点和终点无关,与积分长度有关。对于这种周期函数的积分性质也是我们同学们要牢牢掌握的知识点。这样对于我们在做相关题目时会非常的方便和简单。

  变限积分也是我们考研中常考的内容,微分学中函数的各种性态的研究都曾以可变限积分函数出现于试题中,此类试题多出现于选择题、填空题、解答题,题目难度和不定积分、定积分的难度相当都属于中等难度的试题。而对于变限积分的求导也是我们要掌握的知识点,这个属于函数求导那一块的内容,要求我们熟练的掌握各类变限积分的求导方法。

  因此,关于一元函数积分学这一部分大都是出一些小的题型,但其内容在考研中属于很重要的地位,这就要求我们必须掌握这一部分的知识点和其各种性质。

  函数与极限

  1.函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

  2.数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

  定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

  如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)...

与考研数学知识点相关的考研数学

2023年考研数学高数考前复习重难点内容解析

考研 考研数学 考研数学知识点

  2023年的研究生招生考试将在今年的十二月二十四日开启正式的初次考试,各位考生目前的复习进度如何呢?小编为大家带来了2023年考研数学高数考前复习重难点内容解析,快和小编一起到本文中来看看吧!

  第一,保持对基础概念、理论的重视

  考研数学试题和前几年一样,以考查基础题目和中等题为主,因此对于高数,在平时的复习中,仍然要保持对基础概念、理论的重视,不要一味只做题,要及时从错题中找出自己基础中的薄弱环节,对照教材和复习全书查漏补缺。这个内容需要一直做到临考前。

  第二,把握好重难点

  第一章函数、极限、连续:

  重、难点:

  1、求极限;

  2、无穷小阶的比较问题;

  3、间断点类型的判断;

  4、渐近线。

  题型:

  求分段函数的复合函数;

  求极限或已知极限确定原式中的常数;

  讨论函数的连续性,判断间断点的类型;

  无穷小阶的比较;

  讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

  第二章一元函数微分学:

  重、难点:

  1、导数的定义;

  2、复合函数、隐函数和参数方程的求导;

  3、方程的根的相关问题;

  4、微分中值定理;

  5、导数在经济中的应用(数三)。

  题型:

  求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;

  利用洛比达法则求不定式极限;

  讨论函数极值,方程的根,证明函数不等式;

  利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;

  几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;

  利用导数研究函数性态和描绘函数图形,求曲线渐近线。

  第三章一元函数积分学:

  重、难点:

  1、不定积分、定积分和反常积分的基本运算;

  2、变上限积分的相关问题;

  3、利用定积分求面积和旋转体的体积。

  题型

  计算题:计算不定积分、定积分及广义积分;

  关于变上限积分的题:如求导、求极限等;

  有关积分中值定理和积分性质的证明题;

  定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等综合性试题。

  第四章多元函数微分学:

  重、难点:

  1、多元函数的连续性、偏导存在以及可微三者之间的关系;

  2、...

与考研数学知识点相关的考研数学

推荐更多